Well-Defined Iron Catalysts for the Acceptorless Reversible Dehydrogenation-Hydrogenation of Alcohols and Ketones

نویسندگان

  • Sumit Chakraborty
  • Paraskevi O. Lagaditis
  • Moritz Förster
  • Elizabeth A. Bielinski
  • Nilay Hazari
  • Max C. Holthausen
  • William D. Jones
  • Sven Schneider
چکیده

Acceptorless dehydrogenation of alcohols, an important organic transformation, was accomplished with welldefined and inexpensive iron-based catalysts supported by a cooperating PNP pincer ligand. Benzylic and aliphatic secondary alcohols were dehydrogenated to the corresponding ketones in good isolated yields upon release of dihydrogen. Primary alcohols were dehydrogenated to esters and lactones, respectively. Mixed primary/secondary diols were oxidized at the secondary alcohol moiety with good chemoselectivity. The mechanism of the reaction was investigated using both experiment and DFT calculations, and the crucial role of metal−ligand cooperativity in the reaction was elucidated. The iron complexes are also excellent catalysts for the hydrogenation of challenging ketone substrates at ambient temperature under mild H2 pressure, the reverse of secondary alcohol dehydrogenation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible catalytic dehydrogenation of alcohols for energy storage.

Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this report, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown...

متن کامل

A reusable unsupported rhenium nanocrystalline catalyst for acceptorless dehydrogenation of alcohols through γ-C-H activation.

Rhenium nanocrystalline particles (Re NPs), of 2 nm size, were prepared from NH4ReO4 under mild conditions in neat alcohol. The unsupported Re NPs convert secondary and benzylic alcohols to ketones and aldehydes, respectively, through catalytic acceptorless dehydrogenation (AD). The oxidant- and acceptor-free neat dehydrogenation of alcohols to obtain dihydrogen gas is a green and atom-economic...

متن کامل

Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism

We have prepared and structurally characterized a new class of Fe(II) PNP pincer hydride complexes [Fe(PNP-iPr)(H)(CO)(L)] n (L = Br-, CH3CN, pyridine, PMe3, SCN-, CO, BH4-; n = 0, +1) based on the 2,6-diaminopyridine scaffold where the PiPr2 moieties of the PNP ligand are connected to the pyridine ring via NH and/or NMe spacers. Complexes [Fe(PNP-iPr)(H)(CO)(L)] n with labile ligands (L = Br-,...

متن کامل

Rational development of iron catalysts for asymmetric transfer hydrogenation.

The asymmetric reduction of ketones and imines by transfer of hydrogen from isopropanol as the solvent catalyzed by metal complexes is a very useful method for preparing valuable enantioenriched alcohols and amines. Described here is the development of three generations of progressively more active iron catalysts for this transformation. Key features of this process of discovery involved the re...

متن کامل

Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts.

Highly efficient iridium catalyzed asymmetric transfer hydrogenation of simple ketones with ethanol as a hydrogen donor has been developed. By using chiral spiro iridium catalysts (S)- a series of alkyl aryl ketones were hydrogenated to chiral alcohols with up to 98% ee.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014